BITÁCORA

Crean un microscopio cuántico que puede ver ‘lo imposible’

Un equipo de investigadores de la Universidad de Queensland, en Australia, ha creado un microscopio cuántico que permite observar estructuras biológicas que de otro modo serían imposibles de ver.

Esto abre el camino a las aplicaciones en biotecnología, y podría extenderse mucho más allá en áreas que van desde la navegación hasta la imagen médica, aseguran los científicos en la revista Nature.

Uno de los principales éxitos del microscopio cuántico del equipo ha sido su capacidad para superar una “barrera difícil” en la microscopía tradicional basada en la luz. “Los mejores microscopios de luz utilizan láseres brillantes que son miles de millones de veces más brillantes que el Sol”, apunta el profesor Warwick Bowen, del Laboratorio de Óptica Cuántica de la UQ.

Los sistemas biológicos frágiles, como una célula humana, solo pueden sobrevivir poco tiempo en ellos y esto es un obstáculo importante, reconoce.

Para evitar este problema, el equipo usó el entrelazamiento cuántico, un efecto que Albert Einstein describió como “interacciones fantasmales a distancia”. Esto ocurre cuando dos partículas están conectadas de tal modo que lo que sucede con una inmediatamente afecta a la otra, sin importar cuan grande sea la distancia que las separa.

En este caso, lo aplicaron a los fotones que forman el rayo láser saliente del microscopio. “Entrenaron” a estas partículas para que lleguen a un detector de forma ordenada. Esto reduce el ruido óptico.

“Otros microscopios necesitan aumentar la intensidad del láser para mejorar la claridad de las imágenes. Al reducir el ruido, el nuestro puede mejorar la claridad sin hacer esto. Alternativamente, podemos usar un láser menos intenso para producir el mismo rendimiento del microscopio”, explicó Bowen en un artículo publicado en The Conversation.

Finalmente, lograron un entrelazamiento un billón de veces más brillante que el utilizado antes en la obtención de imágenes.

“Estructuras invisibles”

“El entrelazamiento cuántico de este microscopio proporciona un 35% más de claridad sin destruir la célula, lo que nos permite ver estructuras biológicas diminutas que de otro modo serían invisibles”, señaló Bowen.

Según destaca, “las ventajas son evidentes: desde una mejor comprensión de los sistemas vivos hasta la mejora de las tecnologías de diagnóstico”.

Por ejemplo, en las siguientes imágenes tomadas por el microscopio, la de la izquierda usa entrelazamiento cuántico, mientras que la de la derecha usa luz láser convencional. Ambas muestran parte del interior de una célula de levadura.

Asimismo, Bowen resalta que se trata del primer sensor basado en el entrelazamiento con un rendimiento superior al de la mejor tecnología existente.

Además, explica que las oportunidades del entrelazamiento cuántico en la tecnología son potencialmente ilimitadas. “El entrelazamiento está llamado a revolucionar la computación, la comunicación y la detección. La comunicación absolutamente segura se demostró hace algunas décadas como la primera demostración de la ventaja cuántica absoluta sobre las tecnologías convencionales”, afirma.

Según recuerda, “la computación más rápida que cualquier ordenador convencional posible fue demostrada por Google hace dos años, como la primera demostración de la ventaja absoluta en computación. La última pieza del rompecabezas era la detección, y ahora hemos cerrado esa brecha. Esto abre la puerta a algunas revoluciones tecnológicas de gran alcance”, asegura.

Fuente: Agencia ID.

Comments are closed.

IMPORTANTE:
Sí: El usuario podrá preguntar, felicitar, realizar críticas constructivas y/o contribuir con opiniones relevantes en el campo de la ingeniería e infraestructura.
No: Molestar, intimidar o acosar de ninguna manera.Tampoco utilizará el espacio para la promoción de productos o servicios comerciales, así como de cualquier actividad que pueda ser calificada como SPAM.

Para saber más consulta los Términos de Uso de INGENET.